Finitely Generated Modules over Pullback Rings

نویسندگان

  • David M. Arnold
  • Reinhard C. Laubenbacher
چکیده

The purpose of this paper is to outline a new approach to the classii-cation of nitely generated indecomposable modules over certain kinds of pullback rings. If R is the pullback of two hereditary noetherian serial rings over a common semi{simple artinian ring, then this classiication can be divided into the classiica-tion of indecomposable artinian modules and those modules over the coordinate rings with no non{trivial artinian submodules. The classiication of the artinian modules can be reduced to the case of a nite dimensional algebra over a semi{simple ring. This approach is carried out in the case where the coordinate rings are hereditary noetherian serial rings over a common quotient which is a matrix ring over a eld.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

Diagonal Matrix Reduction over Refinement Rings

  Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement.  Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N  if and only if Mm ~Nm for all maximal ideal m of  R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...

متن کامل

Solving System of Linear Congruence Equations over some Rings by Decompositions of Modules

In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...

متن کامل

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996